Optimum Gabor filter design and local binary patterns for texture segmentation
نویسندگان
چکیده
We present a novel approach to multi-texture image segmentation based on the formation of an effective texture feature vector. Texture sub-features are derived from the output of an optimized Gabor filter. The filter’s parameters are selected by an immune genetic algorithm, which aims at maximizing the discrimination between the multi-textured regions. Next the texture features are integrated with a local binary pattern, to form an effective texture descriptor with low computational cost, which overcomes the weakness of the single frequency output component of the filter. Finally, a K-nearest neighbor classifier is used to effect the multi-texture segmentation. The integration of the optimum Gabor filter and local binary pattern methods provide a novel solution to the task. Experimental results demonstrate the effectiveness of the proposed approach.
منابع مشابه
Local binary patterns versus signal processing texture analysis: a study from a performance evaluation perspective
Purpose – The purpose of this paper is to review and provide a detailed performance evaluation of a number of texture descriptors that analyse texture at micro-level such as local binary patterns (LBP) and a number of standard filtering techniques that sample the texture information using either a bank of isotropic filters or Gabor filters. Design/methodology/approach – The experimental tests w...
متن کاملClassification of Endometrial Images for Aiding the Diagnosis of Hyperplasia Using Logarithmic Gabor Wavelet
Introduction: The process of discriminating among benign and malignant hyperplasia begun with subjective methods using light microscopy and is now being continued with computerized morphometrical analysis requiring some features. One of the main features called Volume Percentage of Stroma (VPS) is obtained by calculating the percentage of stroma texture. Currently, this feature is calculated ...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Image Segmentation based on the Multi-resolution Integration of Adaptive Local Texture Descriptors
The major aim of this paper consists of a comprehensive quantitative evaluation of adaptive texture descriptors when integrated into an unsupervised image segmentation framework. The techniques involved in this evaluation are: the standard and rotation invariant Local Binary Pattern (LBP) operators, multichannel texture decomposition based on Gabor filters and a recently proposed technique that...
متن کاملThe Design of Multiple Gabor Filters for Segmenting Multiple Textures
Gabor filters have been successfully employed in texture segmentation problems, yet a general multi-filter multi-texture Gabor filter design procedure has not been offered. To this end, we first present a multichannel paradigm that provides a mathematical framework for the design of the filters. The paradigm establishes relationships between the predicted texture-segmentation error, the power s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 29 شماره
صفحات -
تاریخ انتشار 2008